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Abstract

The Decision Transformer (DT) has emerged as a powerful paradigm for decision making by framing
offline reinforcement learning (RL) as a sequence modeling problem. However, while recent studies
have begun extending DT's to online settings, online finetuning with pure RL gradients remains largely
underexplored—most existing approaches continue to rely primarily on supervised sequence modeling
objectives. We identify hindsight return relabeling—a component widely used in online DTs—as a key
obstacle that, while beneficial for supervised objectives, hinders the performance of importance sampling-
based RL algorithms such as PPO and GRPO. In this work, we present a new algorithm that enables online
finetuning of Decision Transformers purely with reinforcement learning gradients. Our approach adapts
the GRPO framework—originally developed for large language models—to sequential decision making with
DTs, introducing several key modifications: sub-trajectory optimization for improved credit assignment,
sequence-level likelihood objectives for enhanced stability and efficiency, and active sampling to encourage
exploration in uncertain regions. Across diverse benchmarks, our method consistently outperforms existing
online finetuning baselines such as ODT and ODT+TD3, opening a promising direction toward unifying
reinforcement learning and sequence modeling within Decision Transformer-based policies.

1 Introduction

The Transformer architecture (Vaswani et al., 2017) lies at the core of the success of modern foundation models.
Large language models (LLMs), in particular, demonstrate remarkable generalization and reasoning capabilities
through a simple yet powerful recipe: large-scale pretraining followed by supervised and reinforcement learning-
based finetuning (Radford et al., 2018; Brown et al., 2020; Ouyang et al., 2022; Achiam et al., 2023; Comanici
et al., 2025). Inspired by this success, the Decision Transformer (DT, Chen et al. (2021)) introduces
transformers into sequential decision making, framing reinforcement learning (RL) as a conditional sequence
modeling problem. Unlike conventional RL algorithms, DTs are trained entirely offline with a supervised
objective over pre-collected trajectories, effectively performing imitation learning (Hussein et al., 2017)
conditioned on a desired initial return-to-go (RTG).

The Online Decision Transformer (ODT, Zheng et al. (2022)) extends this framework by enabling online
finetuning after offline pretraining. During online finetuning, ODT first collects trajectories and then finetunes
with hindsight return relabeling, which replaces the intended RT'G with the actual achieved return to align
the RTG distribution of online data with that of the offline dataset. Recent work further augments ODT
with TD3 (Fujimoto et al., 2018) gradients to improve performance (Yan et al., 2024). However, existing
approaches to online finetuning of DTs remain dominated by supervised objectives: ODT relies purely
on supervised loss, while ODT+TD3 only assigns a small weight to the RL gradients. Meanwhile, recent
breakthroughs in LLM training reveal that purely reinforcement learning-based finetuning—such as PPO or
GRPO—can significantly enhance reasoning and alignment (Shao et al., 2024; Guo et al., 2025; Team, 2025).
This motivates a natural and fundamental question:

Can Decision Transformers be finetuned online using pure RL gradients?
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To explore this question, we revisit the training paradigm of existing online DT variants and uncover a key
challenge. We find that hindsight return relabeling, while helpful for supervised objectives, fundamentally
conflicts with on-policy RL algorithms that rely on importance sampling. By altering the conditioning variable
between rollout and training, it introduces a mismatch in the importance ratio, which destabilizes training
and degrades performance (Fig. 1a). Removing this step is therefore a necessary prerequisite for applying
importance sampling-based algorithms such as PPO or GRPO to online finetuning of Decision Transformers.

Building on this insight, we develop a new algorithm for online finetuning of DTs using pure RL gradients.
Specifically, we adapt GRPO—originally designed for LLM reasoning—to sequential decision making, resulting
in our method GRPO-DT. Our approach incorporates three key innovations: (i) a sub-trajectory-based opti-
mization objective for fine-grained credit assignment, supported by either environment resetting (Mhammedi
et al., 2024) or an auxiliary Q-function; (ii) a sequence-level importance ratio that enhances stability and
efficiency; and (iii) an active sampling mechanism that prioritizes uncertain states for exploration. Together,
these modifications enable RL-only finetuning of pretrained DTs and achieve state-of-the-art performance
across multiple benchmarks. We also adapt PPO for the same setting (PPO-DT), attaining competitive
performance where previous PPO-based approaches failed (Yan et al., 2024).

Contributions. We summarize our main contributions as follows:

(i) We identify hindsight return relabeling as the key obstacle preventing effective online finetuning of
Decision Transformers with importance sampling-based methods such as PPO and GRPO.

(ii) We introduce GRPO-DT, an adaptation of GRPO for Decision Transformers that integrates sub-
trajectory optimization, sequence-level importance ratios, and active state sampling, enabling pure-RL
finetuning of Decision Transformers.

(iii) We demonstrate through extensive experiments that online finetuning with pure RL gradients—via our
GRPO-DT and PPO-DT—achieves new state-of-the-art results across diverse benchmarks.

Paper organization. The remainder of the paper is organized as follows. Section 2 reviews background on
MDPs, Decision Transformers, online finetuning, and GRPO. Section 3 introduces our method, and Section 4
presents experimental results. Section 5 discusses related work, and Section 6 concludes our paper.

2 Preliminaries

Markov Decision Process. We formulate the reinforcement learning environment as a Markov Decision
Process (MDP), defined by a tuple M = (S, A, P, R,~). Here, S is the state space, A is the action space,
P(8p+1 | Sh,an) is the probability transition function, R(sp, ap) is the reward function, and 7 € [0, 1] is the

discount factor. At each step h = 1,..., H, the agent observes state s, € S and selects an action aj, € A
according to a policy m(ay | sp). The agent then transits to the next state sp11 ~ P(- | sp,an) and obtains
an immediate reward rp, = R(sp,ap). We use 7 = (s1,a1,71,...,8H,am,ry) to denote the trajectory of

interactions. The learner’s objective is to learn a policy 7 to maximize the expected discounted cumulative
H _ h-1
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Decision Transformer (DT). Decision Transformer (Chen et al., 2021) represents a powerful paradigm for
offline reinforcement learning, formulating decision making as a sequence modeling problem with pre-collected
training trajectories. A DT trajectory consists of three types of tokens: return-to-go (RTG), state, and
action, where the RTG at step h, denoted as g, represents the cumulative reward from step h onward. DT
leverages a GPT-style architecture (Radford et al., 2018) to autoregressively learn a deterministic policy from
pre-collected trajectories: let K denotes the context length, the DT learns to generate the next action ay
based on past interactions (gn— k41, Sh—K+1, Gh—K+1; - - -5 h, Sh) of context length K. The model is trained
via supervised learning by minimizing the mean squared error (MSE) between the predicted action and the
ground-truth action. During evaluation and deployment, the learner specifies a desired initial RTG g1, since
the ground-truth future RTG isn’t known in advance, and leverages the DT to autoregressively generate the
next action and interact with the environment.



Online finetuning of Decision Transformers. Online Decision Transformer (ODT, Zheng et al. (2022))
extends offline DT to the online setting by first conducting offline pretraining and then online finetuning
DTs with interactively collected data. The offline pretraining stage is identical to DT training. In the online
finetuning stage, the DT is deployed into the environment with a desired initial RT'G to collect new trajectories
that gradually replacing old trajectories stored in the replay buffer; the replay buffer is initialized with the
offline trajectories. For online collected trajectories, ODT applies hindsight return relabeling (Andrychowicz
et al., 2017; Ghosh et al., 2019) to relabel the RTG tokens according to the achieved returns. ODT adopts a
stochastic Gaussian policy to account for exploration in the online setting. However, similar to offline DT,
ODT still learns via a supervised learning objective of minimizing the negative log-likelihood (NLL) loss.

While ODT improves model performance during online finetuning, recently, Yan et al. (2024) pointed out that
ODT fails in settings with medium or low-quality offline data due to the sole use of the supervised learning
objective. The supervised learning objective learns agﬁ’ i.e., how action changes as the target RT'G varies,
since DT models actions conditioned on RTGs. However, what actually drives online policy improvement
is mglc‘, i.e., how RTG responds to action adjustments, especially when offline pretraining data is not of
high-quality; see section 3.1 in Yan et al. (2024) for more details. To enable better online improvements, Yan
et al. (2024) propose ODT+TD3, which augments the supervised ODT loss (with highsight return relabeling)
with RL gradients from TD3 (Fujimoto et al., 2018; Fujimoto and Gu, 2021) to guide online exploration
and adaptation. However, ODT+TDa3 still prioritizes the supervised ODT loss in their training objective by
giving a smaller weight to the RL gradients.

Group Relative Policy Optimization (GRPO). GRPO is a reinforcement learning algorithm initially
proposed for large language models (LLMs) finetuning (Shao et al., 2024; Guo et al., 2025). It simplifies
Proximal Policy Optimization (PPO, Schulman et al. (2017)) by removing the need for a value model to
estimate the advantages. Instead, GRPO samples multiple responses per question and uses their average
reward as the baseline for advantage calculation. Specifically, for each query g ~ A(Q) sampled from the
question distribution A(Q), the model generates a group of G responses {01, - ,0g} based on policy g,
A reward 7; is computed for each response o;, usually with the help of a reward model. GRPO optimizes the
policy model by maximizing the following objective:
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where A; = Std({nyr;’f’m})c denotes the advantage of the i-th rollout, w; 5 () = W denotes

the importance ratio, and Dk (mg || mold) denotes the KL penalty that prevents the model from deviating too
far from policy mg,,.

3 Methods

In Section 3.1, we begin by analyzing a key limitation of adapting Decision Transformers to the online setting
using importance sampling-based algorithms such as PPO, and discuss how to address them. Building on
these insights, Section 3.2 presents our adaptation of GRPO to Decision Transformers, incorporating several
key modifications.

3.1 Removing Hindsight Return Relabeling

When deploying DTs, the learner must specify a desired initial RTG g7, since the ground-truth future RTG
is unknown in advance. In Online Decision Transformer (ODT), the learner typically sets a relatively high
target RT'G g1 = gonline during rollout to encourage optimistic exploration. During training, a key component
of ODT—xknown as hindsight return relabeling—replaces the intended RTG gonjine With the actually achieved
RTG gactual (Zheng et al., 2022).
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Figure 1: Examples of GRPO with and without some of our key designs. (a) compares reward curves with
and without hindsight return relabeling when processing sampled sub-trajectories. (b) compares the learning
process of our adapted GRPO (using sub-trajectories) against naive GRPO (using complete trajectories). (c)
shows the effect of using consistent states when sampling a group versus not. (d) illustrates the difference in
the learning process when computing the importance ratio using sequence likelihood versus token likelihood.
(e) compares the learning process with and without active selection for sampling reset points.

When augmenting the supervised ODT objective with RL gradients from TD3, ODT+TD3 (Yan et al., 2024)
also adopt the hindsight return relabeling step. Yan et al. (2024) further attempt to perform online finetuning
of DTs using PPO (Schulman et al., 2017)—an importance sampling-based RL algorithms—but find that
PPO gradients lead to poor performance, ultimately reverting to TD3 gradients instead.

While hindsight return relabeling works well under supervised learning objectives (see Fig. 5.4 in Zheng et al.

(2022)), we find it fundamentally incompatible with importance sampling-based RL gradients that rely on the
7o (als,g)
Togq (als,g)’
learner conditions rollouts on a high RTG goniine for optimistic exploration, yet the achieved RTG gactyal is
often much smaller. If hindsight return relabeling is applied, actions sampled from 7g_,(a | S, gonline) are later
trained as if they were drawn from g, (a | S, gactual), producing unreliable importance weights and unstable

updates. This inconsistency explains why naive applications of PPO to ODT tend to fail (Yan et al., 2024).

ratio as in PPO and GRPO. The issue arises from a mismatch in the conditioning variable g: the

To address this, we remove the hindsight return relabeling step in online finetuning of DT, thereby maintaining
consistency between rollout and training distributions. As shown in Fig. la, removing hindsight return
relabeling significantly improves stability and overall performance. In simpler environments such as Hopper,
relabeling may yield transient gains but eventually leads to collapse, whereas in more complex environments
such as Door, the model fails to learn altogether when relabeling is enabled.

3.2 Adapting GRPO to Decision Transformers

We provide an overview of online finetuning Decision Transformers with GRPO in Algorithm 1 (GRPO-DT),
which is achieved by optimization on sub-trajectories rather than full trajectories as used in the original
GRPO formulation (Shao et al., 2024; Guo et al., 2025). At each iteration, the current policy interacts
with the environment to collect complete rollouts, from which we sample reset points and generate groups
of sub-trajectories for each reset point. The reset points are also actively selected based on the variance
in the policy action distribution. The algorithm computes advantages for each sub-trajectory according to
Eq. (2). These sub-trajectories and their advantages are then used to update the policy with a sequence-level



Algorithm 1 Online Finetuning Decision Transformers with GRPO (GRPO-DT)

Input: Pretrained policy mg,, full trajectory buffer Trepiay, sub-trajectory buffer 7gp, number of iterations 7',
initial state s1, initial RT'G goniine, humber of reset points in a trajectory K, sub-trajectory length Ly,;,
evaluation steps Leyal, group size G for GRPO.

1: for iterationt =1,--- ,7T do
2:  Rollout a full trajectory 7 using the current policy 7y, (- | $1, Gonline), conditioned on initial state s; and
RTG gonline; update Treplay With 7. // Collect complete policy; buffer updated in a FIFO manner.

il

3:  Sample a minibatch B of full trajectories from Trepay from distribution p with p(7) := S
TE

4:  for each full trajectory 7 € B do

5: Sample K reset points {sj}_; from action-variance distribution.

6: For each reset point sy, generate G sub-trajectories {TZZ’b iG:1 of length Ly,j with the current policy
mo,; evaluate each sub-trajectory for L., more steps to get reward R(th,’b). // Sub-trajectory
generation and evaluatiorl\.

7 Compute the advantage Ay, for each sub-trajectory T,it_‘b using Eq. (2).

8: Update the sub-trajectory buffer 7g,, with {(TZUb,gki)}Ea // Buffer updated in a FIFO manner.

9:  Finetune the current policy with sub-trajectories in 75y, using the sequence-level importance ratio
(Eq. (3)) to get a new policy 7, , .
Output: Online finetuned policy .., , .

importance ratio described in Eq. (3).

Compared to vanilla GRPO, our method introduces three key design modifications to better align GRPO
with Decision Transformers. Specifically, (i) we redesign the optimization objective to operate on a group
of sub-trajectories rather than full rollouts, enabled by either resetting or learning an extra Q-function; (ii)
we compute importance weights at the sequence level to better align computed advantages; and (iii) we
incorporate an active sampling mechanism that prioritizes uncertain states for optimization. We describe
each of these design choices in detail below and also provide abalations to demonstrate their effectiveness.

Sub-trajectory rollouts for better credit assignment. In its original formulation for language models,
GRPO assigns a single response-level reward to all tokens within the same sequence (Shao et al., 2024; Guo
et al., 2025), thereby discarding fine-grained credit assignment. A straightforward adaptation to reinforcement
learning would aggregate all stepwise rewards in a rollout and assign this trajectory-level return uniformly to
every timestep. However, such a formulation performs poorly in RL environments: as shown in Fig. 1b, the
model fails to learn when trained with full trajectories in the Ant-medium-v2 environment. This limitation is
expected, as reinforcement learning tasks—particularly those in continuous control-—require more precise
credit assignment than language modeling. Whereas tokens in a sentence tend to be coherently correlated,
actions in RL can lead to drastically different outcomes (e.g., distinct action choices when navigating a maze).

To address this limitation, we adapt GRPO for Decision Transformers using a sub-trajectory formulation. We
first select reset points from each full trajectory. For every reset point si, we generate G sub-trajectories
{lefb}lzgll of length L, using the current policy mg,. To better evaluate the quality of actions taken along
each sub-trajectory, we then continue its rollout for an additional Le, steps by executing the mean action
(or the most-likely action in the discrete case). The cumulative discounted rewards {ri“b}lli‘l obtained over
these Liraj + Leval steps are used to compute normalized advantages for GRPO:

i ri‘:b — mean({ri‘ib7 rz‘;b, .. mi‘fg‘ ) )
ki = td({ sub ,.sub sub ) ' ( )
s T Tha 0 Ty

Here, only the sub-trajectory of length Li.; is directly used for GRPO optimization, while the subsequent
Leyal steps serve purely for evaluation. The parameter Ly, controls the granularity of credit assignment, and
Leyai determines the quality of reward estimation. In practice, we find that using a small L,; and a large
Leya yields the best performance; see Section 4.3 for ablations on these hyperparameters.



To ensure stable optimization, we enforce state consistency by resetting vectorized environments to the
same initial states before generating sub-trajectories within each group. This reset mechanism is essential
for convergence, as shown in Fig. 1lc. In scenarios where environment resetting is infeasible, we train an
auxiliary Q-function following TD3 (Fujimoto et al., 2018) to evaluate candidate actions under a shared state
(see Appendix A.4 for details). This Q-function-guided variant also achieves competitive performance, as
demonstrated in Section 4.3.

Sequence-level importance ratio. In standard GRPO, importance weights are computed at the token
level, reflecting per-step likelihoods. When adapting GRPO to Decision Transformers, we find that computing
importance weights at the sequence level—that is, over entire sub-trajectories—significantly improves model
779(7'?;”5197919)

T (T3 |5k:91)
the advantage /Tki, which is already defined at the sequence level, unlike the token-level ratio used in Eq. (1).
Empirical validation in Fig. 1d further supports this intuition.

performance (Fig. 1d). Intuitively, the sequence-level importance ratio is better aligned with

To incorporate sequence-level weighting into GRPO for Decision Transformers, we modify the original
formulation in Eq. (1). For each reset point s, with return-to-go gi, let {TZ“b}ﬁll denote the group of

sub-trajectories generated from s, and {A\k}ﬁ‘l their corresponding advantages. The optimization objective
becomes:

u u

G b sub
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This sequence-level objective yields more stable and sample-efficient optimization, consistent with concurrent
findings by Zheng et al. (2025) in language modeling. While Zheng et al. (2025) propose a geometric mean
over sequence-level importance ratios, we find that the formulation in Eq. (3) achieves superior performance
when integrated with Decision Transformers.

Active sampling for state selections. During policy rollout, we observe that certain state s; exhibit high
variance in the predicted action distribution mg(- | s¢, g¢). Such variance indicates uncertainty in the policy’s
behavior and suggests these states would benefit from additional exploration. We therefore introduce an
active sampling mechanism that biases sub-trajectory sampling toward high-uncertainty states. For each full
trajectory, we apply a softmax transformation to the per-step action variance o? := Var(mg(- | s¢,9¢)) to form
exp o2

LT=|1 sxft’zgg) ’
generation. This simple active selection mechanism prioritizes learning updates on the most uncertain regions
of the trajectory, yielding faster and more stable convergence (Fig. 1e).

a sampling distribution p with p; := and sample reset points according to p; for sub-trajector,
pling distribution p with p d pl t point ding to p; f b-trajectory

4 Experiments

In this section, we aim to answer three questions:
(i) How does our GRPO-DT (Algorithm 1) perform compared with existing algorithms?

(ii) Do pure RL gradients provide better signals compared with methods that prioritize supervised loss
during DT online finetuning?

(iii) How does each component in our method affect the performance?

The model architecture and hyperparameter setting can be found in Appendix A.3.1.

4.1 Experimental Setups

Tasks and datasets. We evaluate on three types of continuous control and manipulation benchmarks from
D4RL (Fu et al., 2020). (1) Gym locomotion (Hopper, Walker2d, Ant) (Todorov et al., 2012) with dense



rewards, using medium, medium-replay, and random datasets. (2) AntMaze (v2) with sparse goal-reaching
rewards (success = 1, else 0), using umaze and umaze-diverse datasets. (3) Adroit manipulation tasks (v1)
(Rajeswaran et al., 2017) including Door, Hammer, and Pen, evaluated on human and cloned datasets. The
random datasets consist of offline trajectories of low quality while others are of medium quality. Details of
each environment are provided in Appendix A.1.

Baselines. In our experiments, we mainly compare our adapted GRPO-DT and PPO-DT with three
baselines: Online Decision Transformer (ODT) (Chen et al., 2021), the widely adopted online version of
Decision Transformer with supervised loss as online finetuning objective; ODT+TD3 (Yan et al., 2024), the
current state-of-the-art method for online finetuning of Decision Transformer; IQL (Kostrikov et al., 2021), a
popular offline algorithm which also has an online variant.

Metrics. We use the normalized average reward of 3 random seeds according to D4rl’s statistic (Fu et al.,
2020) where higher rewards represent better performance. Meanwhile, we also present the learning curves
which shows the change of the normalized rewards with respect to the training iterations. When presenting
the curves, we set the x-coordinate to be the number of iteration. This variable is the iteration from line 3 of
the Algorithm. 1 from ODT Zheng et al. (2022) paper. Note that conventional x-axis metrics, such as the
number of online transitions (indicating sample efficiency) and the number of gradient updates (indicating
computational cost), are not suitable for our setting. For gradient updates, ODT/ODT+TD3 requires nearly
two orders of magnitude more updates per iteration compared to our methods GRPO-DT and PPO-DT; for
online interactions, however, our adapted policy gradient methods consume several to tens of times more
samples than ODT/ODT+TD3.! Hence, neither metric provides a fair comparison.

PPO-DT implementation. Our PPO-DT implementation follows the practice of CleanRL (Huang et al.,
2022). Unlike prior work that applies PPO to multi-agent reinforcement learning (MARL) tasks with Decision
Transformer (Meng et al., 2023), we train the critic using A-returns rather than discounted Monte Carlo
returns. Specifically, A-returns combines multi-step returns with temporal-difference bootstrapping to balance
bias and variance in value estimation. In addition, we store the action probabilities at sampling time instead
of recomputing them during training.

4.2 Main Results

Table 1 reports the normalized returns and standard deviations averaged over three random seeds for each
method. Overall, our proposed method, GRPO-DT, achieves the best performance across the majority of
tasks. PPO-DT performs competitively in several cases but fails in certain environments (e.g., D-C-v1).
ODT+TD3 achieves reasonable performance yet is generally outperformed by GRPO-DT. Both ODT and
IQL underperform across most benchmarks, particularly on tasks with low-quality pretraining data such
as the random datasets, as well as on more challenging domains like Adroit. It is worth noting that our
implementation of ODT+TD3 uses longer training iterations (as described in Section 4.1), leading to better
results than those originally reported by Yan et al. (2024).

Learning with low-quality offline data. The first block of Table 1 presents results obtained when
pretraining on low-quality offline data. We observe that both our proposed methods, GRPO-DT and
PPO-DT, perform substantially better than all other baselines on the random datasets. These datasets
contain trajectories collected by an untrained random policy, which provide little meaningful supervision.
As a result, pretraining on such data can introduce detrimental biases, often causing purely supervised
methods to collapse or converge to suboptimal behaviors. In contrast, our adapted GRPO-DT and PPO-DT
demonstrate strong robustness under these challenging conditions, achieving superior performance despite
poor initialization. Meanwhile, ODT—relying solely on supervised learning signals—struggles to escape local
optima, and IQL exhibits similar limitations.

Learning with medium-quality offline data. The remaining sections of Table 1 report results obtained
when pretraining on medium-quality offline data. For the Gym locomotion tasks, our adapted methods,

IThis is consistent with the conventional idea that temporal-difference (TD) learning is more sample efficient than policy
gradients due to bootstrapped TD updates (Sutton et al., 1998).



Table 1: Average normalized return of each method. The best result and those within 1% of the best are
shown in bold; results within 10% of the best are underlined. Environment and dataset abbreviations are as
follows: Ho = Hopper, Wa = Walker2d, An = Ant, U = AntMaze-UMaze, UD = AntMaze-UMaze-Diverse,
D = Door, P = Pen, H = Hammer; dataset types: M = Medium, MR = Medium-Replay, R = Random, C =
Cloned, H = Human. Each entry is reported as “final performance (standard deviation)”.

DT IQL oDT ODT+TD3 PPO GRPO-DT
MuJoCo Ho-R-v2 1.98 42.73 (13.66) 30.43 (0.01) 83.32(8.46) 106.97 (0.96) 99.20 (3.80)
(random) Wa-R-v2 4.59 15.92 (3.54) 10.88 (0.34) 82.95 (18.28) 108.69 (8.86) 100.25 (33.19)
An-R-v2 30.38 59.65 (23.26) 19.08 (3.97) 80.58 (7.25) 107.45 (22.83) 120.69 (5.47)
Average 12.32 39.43 20.13 82.28 107.70 106.71
Ho-M-v2 63.1 61.49 (33.33) 98.02 (0.63) 101.47 (2.29) 105.65 (5.43) 108.81 (0.85),
Ho-MR-v2 29.76 98.36 (0.62) 87.73 (0.59) 107.94 (2.29) 109.60 (1.63) 83.61 (20.75)
MuJoCo Wa-M-v2 70.78 102.28 (1.04) 76.49 (0.78) 103.27 (5.95) 109.49 (9.04) 158.34 (3.75)
(medium)  wa MR-v2 58.06 104.27 (3.64) 74.21 (2.41) 102.80 (2.68) 117.45 (14.79) 137.36 (5.64)
An-M-v2 90.58 118.18(2.42) 90.71 (0.03) 131.56 (0.41) 139.84 (0.95) 147.51 (2.44)
An-MR-v2 78.15 117.51(0.82) 83.63 (0.87) 120.01 (2.94) 117.95 (2.54) 142.05 (3.32)
Average 65.07 100.35 85.13 111.175 116.66 129.61
D-C-v1 4.97 0.10 (0.06) 1.26 (1.02) 79.98 (5.62) 0.19 (0.00) 96.41 (7.59)
D-H-v1 9.30 17.18 (0.75) 8.76 (3.87) 79.73 (4.37) 94.12 (3.99) 89.33(10.12)
Adroit P-C-v1 75.02 63.09 (14.38) 16.24 (5.12) 109.86 (6.27) 27.14(0.24) 111.15 (2.61)
P-H-v1 95.23 24.94 (1.48) 19.84 (7.42) 77.18 (7.42) 9.92 (5.00) 85.11 (6.08)
H-C-v1 1.80 9.56 (8.13) 1.32(0.06) 119.95 (2.45) 130.60 (2.81) 140.45 (1.93)
H-H-v1 1.01 0.74(0.37) 0.91(0.22) 120.93 (2.18) 129.23 (2.18) 132.64 (12.56)
Average 31.22 19.27 8.06 97.93 65.2 109.18
Ant U-v2 16.00 91.21(2.14) 89.27 (3.73) 99.64 (0.20) 0.00 (0.00) 96.07 (0.53)
ntmaze e ——
UD-v2 38.00 0.00 (0.00) 63.81 (1.64) 99.42 (0.43) 47.00 (4.00) 97.70 (2.67)
Average 27 45.61 76.54 99.53 23.50 96.89

GRPO-DT and PPO-DT, achieve the highest returns, while ODT+TD3 remains competitive and ODT
performs reasonably well. In Adroit, where both the state and action spaces are substantially larger and
more complex, policies are prone to degradation or collapse during finetuning. Under these challenging
conditions, ODT and IQL fail to improve upon their pretrained performance, whereas our adapted GRPO
consistently attains higher returns, demonstrating strong exploration and stability. ODT+TD3 achieves
competitive performance on several Adroit environments but does not match the robustness of our approach
across the board. Similarly, PPO-DT performs strongly on certain tasks yet fails to improve in others For the
AntMaze domain, where rewards are sparse, ODT+TD3 achieves the best performance, while our adapted
GRPO remains competitive. Other methods fail to make meaningful progress in this setting.

Advantages over previous methods. Beyond final performance, our adapted GRPO offers several
practical advantages over existing approaches. First, unlike methods that rely on an auxiliary critic, our
approach introduces no additional networks, making it substantially simpler to implement. Second, by
leveraging accurate gradient estimation through sub-trajectory sampling, our method is more computationally
efficient and requires far fewer gradient updates per iteration. For instance, our approach performs only
8 x 256 gradient updates per iteration, compared to approximately 256 x 300 updates required by ODT
or ODT+TD3, representing a significant reduction in compute cost. Finally, our method can finetune any
pretrained DT-style model with minimal modification (see Appendix A.5 for experiments), whereas prior
approaches such as ODT+TD3 often require modifying the offline pretraining loss to incorporate RL gradients
and jointly training an auxiliary Q-function. This dependency prevents them from directly finetuning already
pretrained models, limiting their flexibility and scalability.
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Figure 2: Performance comparison across different RL environments. Our proposed method GRPO-DT
achieves the best performance across the majority of tasks. PPO-DT performs competitively in most cases but
fails in certain environments. ODT+TD3 achieves overall decent performance but is generally outperformed
by GRPO-DT. Both ODT and IQL consistently underperform across most environments.

4.3 Analyses and Ablations

Ablation on sub-trajectory length. Sub-trajectory in our method represents the unit for assigning
advantage. Thus its length is crucial to our algorithm. Empirical results in Fig. 3a confirm that increasing
sub-trajectory length destabilizes training and leads to inferior outcomes. However, excessively short sub-
trajectories, while stable, also yield sub-optimal results. This is likely because very short trajectories sampled
from the same state distribution are overly homogeneous, limiting their ability to provide informative learning
signals for RL finetuning.

Ablation on sub-trajectory evaluation steps. For each sub-trajectory, we extend the rollout with Leya
additional evaluation steps ranging from 30 to 400, depending on the environment. As illustrated in Fig. 3b,
longer evaluation steps enable more reliable assessment of sub-trajectory quality and as a result consistently
improve model performance.

Q-function-guided GRPO-DT without resetting. In scenarios where resetting the environment is
infeasible, we instead train an additional Q-function using TD3 and apply GRPO-DT with Q-function-guided
advantages (detailed in Algorithm 2 in Appendix A.4). As shown in Fig. 3¢, this Q-function-guided variant
still achieves decent performance without state resetting.

5 Related Work

Transformers for RL. With transformers becoming the dominant architecture in both CV and NLP, a
growing number of transformer-based approaches have been proposed in the RL community (Lin et al., 2023;
Chen et al., 2022; Yuan et al., 2024). Owing to their strong capability in modeling sequential dependencies
(Parisotto and Salakhutdinov, 2021), transformers are naturally suited for reinforcement learning when
formulated as a sequence modeling problem (Chen et al., 2021; Janner et al., 2021; Wang et al., 2022). In this
paradigm, models typically condition on past states, actions, and returns to autoregressively predict future
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Figure 3: Panel (a) shows ablation on sub-trajectory length Li,j. Both longer and shorter sub-trajectory
length lead to inferior results. Panel (b) shows ablation on evaluation steps Leya. Inadequate evaluation
steps lead to model collapse. Panel (¢) shows training with our variant described in Algorithm 2. It achieves
decent results.

actions. However, such approaches rely on offline datasets and often suffer from issues of data scarcity and
out-of-distribution problem. This motivates the offline pretraining followed by online finetuning paradigm.
Nevertheless, existing works either treat supervised objectives as the primary training signal when tuning
transformers online (Zheng et al., 2022; Yan et al., 2024), rely on Q-learning rather than transformer-based
architectures (Lee et al., 2022; Zheng et al., 2023; Song et al., 2022; Yu and Zhang, 2023; Nair et al., 2020),
or are situated in MARL settings (Meng et al., 2023). In contrast, our work focuses on online finetuning of
offline-pretrained decision-making transformers using purely RL-based gradients.

RL for transformers. Reinforcement learning has also emerged as a powerful technique for aligning
and enhancing large language models (LLMs) (Ouyang et al., 2022; Lee et al., 2023). A wide spectrum of
algorithms has been explored, ranging from policy gradient methods such as PPO, to off-policy methods
like Implicit Language Q-Learning (ILQL) (Snell et al., 2022) and VerifierQ (Qi et al., 2024), as well as
reward-model-free methods such as DPO (Rafailov et al., 2023) and KTO (Ethayarajh et al., 2024). More
recently, novel algorithms such as GRPO and approaches like ReFT (Luong et al., 2024) have been proposed
to further improve the reasoning ability of LLMs. RL methods have also been applied to transformer-based
multi-modal models (Liu et al., 2025; Shen et al., 2025). However, the strategies designed for training LLMs
cannot be directly transferred to finetuning Decision Transformers, as decision-making tasks fundamentally
differ from language generation in terms of environment dynamics, reward distributions, and optimization
objectives. To this end, our work adapts RL algorithms widely adopted in LLMs, specifically GRPO and
PPO, to the context of finetuning Decision Transformers.

6 Conclusion

We present a systematic study on applying pure reinforcement learning gradients for online finetuning of
Decision Transformers. We identify hindsight return relabeling as the central obstacle preventing the use of
importance sampling-based policy gradients and propose a principled solution by adapting GRPO to the
DT framework. Our adapted algorithm incorporates sub-trajectory optimization, sequence-level importance
ratios, and active state sampling, enabling effective online finetuning of pretrained DTs. We further extend
PPO to this setting and show that pure RL gradients substantially enhance DT performance across a wide
range of benchmarks.

Our findings highlight the promise of unifying reinforcement learning and sequence modeling under a shared
transformer framework. We believe this work opens up new directions for scaling Decision Transformers
through pure RL optimization, bridging advances in language modeling and reinforcement learning toward
more capable and adaptable decision making policies.
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A Appendix

A.1 Environmental and Dataset Details

Our experiments cover three types of continuous control and manipulation benchmarks from D4RL (Fu
et al., 2020). The first type includes the Gym locomotion environments Hopper, Walker2d, and Ant (all in
v2) (Todorov et al., 2012), which provide dense reward signals. For these environments, we evaluate on the
medium, medium-replay, and random datasets. The medium dataset consists of trajectories generated by
a policy trained to roughly one-third the performance of an expert policy. The medium-replay dataset is
constructed from the replay buffer of a policy trained to medium-level performance, and the random dataset
consists of trajectories generated by an untrained random policy. The second type focuses on sparse-reward
goal-reaching problems in the AntMaze domain (v2). Here, the agent controls an Ant robot to reach a
designated target location, receiving a reward of 1 upon success and 0 otherwise. We use the umaze and
umaze-diverse datasets. The third type includes robotic manipulation tasks from the Adroit benchmark
(v1) (Rajeswaran et al., 2017), including Door, Hammer, and Pen. These are high-dimensional tasks with
challenging dynamics. We experiment with both the human and cloned datasets, where the former is collected
from human teleoperation and the latter from behavior cloning policies.

A.1.1 MuJoCo Environments
We conduct our experiment on three MuJoCo environments:

e Hopper. Hopper is a MuJoCo-based single-legged locomotion task where the agent controls three
joints to make the robot hop forward while maintaining stability. The action space is 3-dimensional
continuous, corresponding to torques applied at the joints, each bounded within [—1,1]. The observation
space has 11 dimensions, consisting of positional and velocity information. At each timestep, the reward
is a combination of survival bonus, forward progress, and a control cost penalty proportional to the
squared magnitude of the action. Episodes terminate when the agent falls or reaches the maximum
horizon (default 1000 steps).

o Walker2d. Walker2D is a 2D bipedal walking robot task where the agent controls six joints to make the
robot walk forward steadily. The action space is a 6-dimensional continuous vector (torques in [—1,1])
applied to hinge joints. The observation space has 17 dimensions. At each timestep, the agent receives
a reward composed of (i) a “healthy” survival bonus, (ii) a forward progress reward proportional to the
displacement in the x-direction, and (iii) a control cost penalty proportional to the magnitude of the
action. Episodes terminate if the robot becomes unhealthy (e.g. torso height out of range, non-finite
states) or reaches the maximum horizon.

e Ant. The Ant task is a 3-dimensional locomotion problem where the agent controls an 8-joint quadruped
to move forward while maintaining balance. The action space is an 8-dimensional continuous vector
(typically bounded in [—1,1]). The observation space comprises the robot’s positional and velocity
state (and sometimes contact observations). Each timestep the agent receives a reward combining a
forward-progress term (displacement in the x-axis), a control cost penalty (proportional to the squared
action magnitude), and often an alive bonus. Episodes terminate when the ant falls or the time horizon
(default 1000) is reached.

The size and normalized return of each offline dataset is presented in Table 2.

A.1.2 Adroit Environment
We choose three Adroit environments to experiment:

e Door. The Door task requires a 28-DoF hand-arm system to unlatch and open a door. The action
space is 28-dimensional continuous, with each joint command scaled to [—1, 1] The observation space has
39 dimensions, including joint states, latch status, and relative positions between the hand and handle.
The dense reward combines distance penalties, velocity regularization, and bonuses for increasing door
hinge displacement, encouraging successful door opening.
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Table 2: The size and normalized rewards of offline dataset used in MuJoCo environment.

Dataset Size Normalized Reward
Hopper-medium-v2 999906 44.32+12.27
Hopper-medium-replay-v2 402000 14.98+16.32
Hopper-random-v2 999906 1.194+1.16
Walker2d-medium-v2 999995 62.091+23.83
Walker2d-medium-replay-v2 302000 14.84+19.48
Walker2d-random-v2 999997 0.01+0.09
Ant-medium-v2 999946 80.30435.82
Ant-medium-replay-v2 302000 30.95+31.66
Ant-random-v2 999930 6.36+10.07

e Hammer. The Hammer task involves a 28-DoF robotic hand-arm system (a 24-DoF ShadowHand
plus a 4-DoF arm) that must pick up a hammer and drive a nail into a board. The action space is
26-dimensional continuous, representing joint commands (scaled into [—1,1]. The observation space is
46-dimensional, encoding joint states, poses of the hammer and nail, and forces on the nail. The reward
combines terms for progress in driving the nail (hinge displacement or insertion depth), penalties on
control magnitude, and distance-based cost.

e Pen. The Pen task requires a 24-degree-of-freedom robotic hand to manipulate a pen into a target
orientation. The action space is 24-dimensional continuous, with joint commands scaled to [—1,1]
for each actuator. The observation space is 45-dimensional, including joint states, pen pose, and
the goal orientation. The reward is composed of a negative penalty proportional to the Euclidean
distance between the pen and target, an orientation similarity term (dot product between real and
target orientation), proximity bonuses when both distance and angular alignment are sufficiently tight,
and a dropping penalty if the pen falls.

The corresponding offline dataset quality can be found in Table 3.

Table 3: The size and normalized rewards of offline dataset used in Adroit environment.

Dataset Size Normalized Reward
Pen-cloned-v1 499886 108.634 122.43
Pen-human-v1 4800 202.69+ 154.48
Hammer-cloned-v1 999872 8.11+ 23.35
Hammer-human-v1 10948 23.80+ 33.36
Door-cloned-v1 999939 12.29+ 18.35
Door-human-v1 6504 28.35+ 13.88

A.2 Antmaze Environment

The Umaze environment in Antmaze places an Ant quadruped in a U-shaped maze. The action space
is 8-dimensional continuous, with torques in [—1,1]. The observation space is a goal-aware dictionary: a
27-dimensional “observation” vector (positions and velocities of the Ant body parts), plus 2D achieved goal
and desired goal vectors indicating the Ant’s torso position and the target goal in the plane. The reward
provide is sparse: 0 if the ant hasn’t reached its final target position, and 1 if the ant is in the final target
position (the ant is considered to have reached the goal if the Euclidean distance between both is lower than
0.5 m). The quality of the offline datasets used is presented in Table 4.
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Table 4: The size and the average and standard deviation of the normalized reward of the Antmaze datasets
used in our experiments.

Dataset Size Normalized Reward
Antmaze-Umaze-v2 998573 86.144 34.55
Antmaze-Umaze-Diverse-v2 999000 3.48+ 18.32

A.3 Experimental Details
A.3.1 Hyperparameters

Table 5 shows the hyperparameters that are common across all our experiments and Table 6 summarizes the
domain-specific hyperparameters for each environment and dataset for GRPO. For antmaze-environment,
following ODT+TD3’s (Yan et al., 2024) practice, We remove all 1-step trajectories, because the size of
the replay buffer for decision transformers is controlled by the number of trajectories, and antmaze dataset
contains a large number of 1-step trajectories due to its data generation mechanism (immediately terminate
an episode when the agent is close to the goal, but do not reset the agent location). And we did not add
positional embedding as suggested by ODT (Zheng et al., 2022).

For GRPO, we collect 1 complete trajectory fpr replay buffer per iteration in MuJoCo and Antmaze
environments and 5 complete trajectories each iteration in Adroit environments. The buffer size for the
complete trajectories is 32. When doing resetting, we sample 16 trajectories from the complete trajectories
buffer. We choose four reset points for each trajectory and the group size for each trajectory is 8. This results
in 512 sub-trajectories per iteration. The buffer size for this sub-trajectories is 2048.

For PPO, we collect 8 trajectories for MuJoCo and Antmaze environment and 16 trajectories for Adroit
each iteration. The buffer size is 4 times of the number of trajectories collected per iteration. Following
ODT+TD3’s practice, we add Layernorm (Ba et al., 2016) to the critic of PPO in Adroit and Antmaze
environment to stabilize training process.

Table 5: The common hyperparameters in our experiments

Hyperparameters Value
Number of layers 4
Number of attention heads 4
Embedding dimension 512
Actor Optimizer LAMB (You et al., 2019)
Dropout 0.1 when pretraining, disabled when finetuning
Nonlinearity function SiLU (Elfwing et al., 2018)
Weight decay 0.0001
Gradient norm clip 0.5
Target entropy -dim(.A)
PPO Critic layer 2
PPO Critic hidden size 256 for MuJoCo, 512 for others
PPO Critic activation SiLU
PPO Critic Optimizer AdamW (Loshchilov and Hutter, 2017)
PPO discount factor y 0.99

A.4 Q-function-guided GRPO-DT

In this section we introduce GRPO with Q, an action-level variant of our method designed for settings where
environment resets are infeasible. Instead of generating multiple sub-trajectories from the same state, our
method samples a group of actions under the current policy for each visited state and evaluates them with an
auxiliary Q-function. The resulting Q-values are normalized to provide advantages, which are then used to
optimize the policy via the GRPO objective. Meanwhile, the Q-function is updated following standard TD3
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Table 6: The hyperparameters that we use to finetune DT in each domain, where T},4i, and Te,q; stands for
context length for training and evaluation, «y is the discount factor, Ir, represents learning rate for the actor,
Liraj and Leyq represent sub-trajectory length and evaluation steps for each sub-trajectory respectively, € is
Clipping threshold,egrpo is the minimum deviation of a sub-trajectory’s raw reward from the mean reward
of its group, ETPR is the initial entropy temperature for online finetuning.

Environ BS Tirain Teval RTG v Ir, Liraj Leval € EGRPO ETPR
Ho-M(R) 256 20 1 7200 0.995 5e-5 15 400 0.2 2.0 0.20
Ho-R 256 20 1 7200 0.995 5e-5 15 400 0.2 2.0 0.20
Wa-M(R) 256 20 1 10000 0.995 5e-5 15 400 0.3 2.0 0.04
Wa-R 256 20 1 10000 0.995 5e-5 15 400 0.3 2.0 0.20
An-M(R) 256 20 1 12000 0.995 5e-5 15 200 0.3 2.0 0.04
An-R 256 20 1 12000 0.995 b5e-5 15 200 0.3 2.0 0.20
D-C 512 5 1 3000 0.99 3e-5 10 100 0.3 0.5 0.10
D-H 512 5 1 3000 0.99 3e-5 10 100 0.3 0.4 0.04
P-C 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
P-H 512 5 1 6000 0.99 3e-5 3 30 0.3 0 0.02
H-C 512 5 5 4000 0.99 3e-5 10 100 0.3 0 0.05
H-H 512 5 5 4000 0.99 3e-5 10 100 0.3 0.8 0.05
U 256 5 1 2 1.0 5e-5 10 200 0.2 0 0.05
UD 256 1 5 2 1.0 5e-5 10 200 0.2 0 0.05

practice. This design preserves the core idea of group-based policy optimization while eliminating the need
for environment reset.

Algorithm 2 Q-function-guided GRPO-DT (action-level variant)

Input: Pretrained policy mg, trajectory buffer Treplay, auxiliary Q-function @4, total rounds T, group size G,
discount factor 7.
1: forroundt=1,---,7 do
2:  Rollout trajectory 7 using current policy my(+|s, g); update Treplay With 7. // Trajectory collection with
FIFO buffer update.

3:  Sample a minibatch G from Trepay with probability p(7) o< |7].

4: for each 7 € G do

5: For each state sj, in 7, sample G actions {as;}%, ~ ma(-|sn, gn)-

6: Evaluate each sampled action with Q¢ (sp,an,:).

7: Normalize scores {Qs(sn,an,;)} to obtain advantages {th} // Action-level evaluation with
Q-function. N

8: Update policy mg using GRPO objective with advantages {Ay, ;}.

9: Update Q4 following TD3-style critic learning.

A.5 Training with Other Architectures

To evaluate the generality of our algorithm, we further apply it to other DT-style architectures. Reinformer
(Zhuang et al., 2024) is a max-return sequence modeling approach for offline reinforcement learning. It
integrates the RL objective of return maximization into supervised sequence modeling by using expectile
regression to predict the in-distribution maximum return, which then guides optimal action generation. This
method enhances trajectory stitching capability and achieves state-of-the-art performance among sequence
models on the D4RL benchmark, particularly on tasks requiring learning from suboptimal data. The training
process of applying our adapted GRPO to this architecture is presented in Fig. 4.
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Figure 4: Applying our GRPO-DT to different architectures: standard DT vs. Reinformer.

18



	Introduction
	Preliminaries
	Methods
	Removing Hindsight Return Relabeling
	Adapting GRPO to Decision Transformers

	Experiments
	Experimental Setups
	Main Results
	Analyses and Ablations

	Related Work
	Conclusion
	Appendix
	Environmental and Dataset Details
	MuJoCo Environments
	Adroit Environment

	Antmaze Environment
	Experimental Details
	Hyperparameters

	Q-function-guided GRPO-DT
	Training with Other Architectures


